Watt Watchers of Texas: Texas is Too Good To Waste™

Energy is a fundamental concept that drives our modern ways of life. Comprehending the difference between primary and secondary energy sources is, therefore, essential in assessing our energy systems' efficiency, sustainability, and environmental impact. These two categories represent distinct stages in the energy conversion process, each playing a critical role in shaping the outcomes of experiments and influencing everything from policy and industry to scientific discoveries. If you are an educator, follow the link to learn our tips and tricks for teaching about primary vs. secondary energy in the classroom before continuing. 

Primary Energy

Primary energy sources are the natural, unconverted forms of energy found in nature, otherwise known as unconverted or original fuels. They are typically the initial sources of energy that undergo extraction or harvesting before they can be used to generate electricity, perform mechanical work, or provide heat. For example, the fuels that can be mined, reaped, extracted, harvested, or harnessed directly. 

Primary energy in the form of fossil fuels includes coal, oil, and natural gas, which are the primary energy sources extracted from the Earth's crust. They are burned to release heat energy and generate electricity or power transportation.

Renewable resources include solar energy, wind power, hydropower, and biomass. These resources are harnessed directly from nature, are naturally replenished, and can be converted into electricity or used for heating without depleting the planet's natural resources or causing significant environmental damage. 

Finally, nuclear fuel, a zero-emission energy source, is powered by uranium and plutonium. These elements are mined from the Earth and used to create heat through a process called nuclear fission. Despite being a clean energy source due to its lack of carbon dioxide emissions, nuclear fuel can cause environmental damage through mining activities. 

Secondary Energy

Secondary energy sources, on the other hand, are forms of energy that result from the conversion of primary energy sources or resources that have been converted or stored. These sources are more readily usable for various applications and are the forms of energy we encounter daily. Secondary energy cannot be harnessed directly from nature; rather, secondary energy is energy that has already been converted. For example, electricity cannot be mined or harvested, though it is available in quick bursts on occasion from lightning. It is generated as a secondary form from primary fuels, like natural gas. Secondary energy includes: 

Electricity: Electricity is a secondary energy source that results from the conversion of primary energy sources such as coal, natural gas, or renewable resources. It is versatile and used for lighting, appliances, industrial processes, and transportation.

Heat: Heat is another secondary energy source produced from primary sources like fossil fuels or renewable resources. It is used for space heating, water heating, and industrial processes.

Mechanical Energy: Mechanical energy is generated by engines, motors, and turbines, often powered by electricity or direct mechanical power sources.

The choice between primary and secondary energy sources can profoundly impact the results of experiments and real-world applications. For instance, in a laboratory experiment studying the efficiency of electricity generation, using primary energy data (e.g., the energy content of coal) would provide insights into the inherent losses and efficiency of the conversion process. Conversely, relying on secondary energy data (e.g., the electricity generated from coal) would focus on the end-use application but may overlook the losses associated with energy conversion.

Understanding the difference between primary and secondary energy is vital in energy policy and environmental sustainability. For example, assessing the carbon emissions associated with a particular energy source requires consideration of primary energy sources (e.g., coal emissions) rather than just secondary energy forms (e.g., electricity use), as the latter can mask the environmental impact of the energy conversion process. Likewise, the environmental impact of zero-emission energy resources like tidal energy and nuclear power can often be overlooked. 

Because of this, the distinction between primary and secondary energy sources is critical for assessing scientific experiments, energy system analyses, and policymaking. Without having a clear understanding of primary vs. secondary energy, researchers, engineers, and policymakers would be left misinformed on important decisions regarding energy efficiency, environmental impact, and sustainable energy transitions. Likewise, as consumers, it's essential we learn about energy in order to make informed decisions in our personal lives as well as in our communities. 

After researching and discussing each of the different individual energy resources, use time to discuss the difference between primary and energy resources and then to classify each of the following resources into one of two categories. Do this activity in small groups or as a whole class on the board. Time: 20-30 minutes

Watt Watchers has everything you need to both learn about energy and to teach it in the classroom. Visit us on our website here for the best energy activities and don't forget to check out Resourcefulness for an expanded explanation of primary vs. secondary energy.

Emerging in 1970 amid an environmental movement fueled by mounting concerns over pollution, biodiversity loss, and the degradation of natural habitats, Earth Day has since become an annual global celebration held on April 22nd. Over the years, it has transformed into a powerful force for environmental action, galvanizing millions worldwide to champion environmental awareness and sustainable practices. Today, Earth Day serves as a resounding call to action for individuals, communities, and governments to prioritize environmental stewardship and collaborate towards a more sustainable future. But, above all, it serves as a poignant reminder of our collective responsibility to safeguard and nurture the planet we all call home.

In 2024, Earth Day's central theme, "Planet vs. Plastics," underscores the urgent imperative to combat plastic pollution and achieve a 60% reduction in plastics by 2040. This includes everything from addressing the detrimental impacts of single-use plastics to pushing for legislation to penalize the fast fashion industry for the damage it continues to inflict on our environment. With an eye towards forging a plastic-free legacy for future generations, Earth Day 2024 is dedicated to mobilizing action across various fronts. This includes raising public awareness about the adverse effects of plastic waste on human, animal, and environmental well-being, alongside advocating for a complete phase-out of all single-use plastics by 2030

What is plastic? 

In our modern world, plastic seems to be everywhere from our food deliveries and our water bottles to our accessories and shoes. But what exactly are plastics, and how do they impact the environment? 

Plastic is a synthetic material made from long chains of molecules derived primarily from fossil fuels known as polymers. It's a material that has become ubiquitous in modern society due to its versatility, durability, and low cost of production. Typical uses of plastic can include anything from packaging and consumer goods to construction materials and textiles. However, it's important to note that not all plastics are equal. There is a wide variety when it comes to plastic types, which are categorized based on both their chemical composition and properties. Some common types include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), and polyethylene terephthalate (PET). This means that while some plastics can be recycled, not all types are equally recyclable. In fact a large amount of plastics are unable to be or are not bothered to be recycled at all, leading to extreme environmental damage

Why are plastics harmful? 

Plastics became popular in part due to their amazing versatility and durability. After all, a material that can protect goods from the elements at a low cost can be a great asset. However it is this longevity that makes plastic problematic for the planet's health. If left to decompose in a landfill or body of water, plastics can persist in the environment for hundreds of years, contaminating ecosystems and harming wildlife. Lack of regulation and persistent overuse has resulted in millions of tons of plastic waste that today can be found in the planet's oceans, rivers, lakes, soil, and even in the air we breathe. This disrupts natural habitats, threatening biodiversity, and altering the balance of delicate ecosystems.

To complicate things further, plastics can also enter our bodies through various pathways, including ingestion, inhalation, and dermal absorption. Microplastics, tiny plastic particles less than 5 millimeters in size, have even been detected in food, water, and air samples, raising concerns about their potential health impacts. Exposure to plastics and their associated chemicals have additionally been linked to a range of health risks, including reproductive disorders, hormonal disruptions, and respiratory problems. Yet, the plastics alone aren't the only problem. Certain additives used in plastics, such as phthalates and bisphenol A (BPA), have been identified as potential endocrine disruptors with adverse effects on human health.

What can you do to help?

Various alternatives to traditional plastics have emerged to address the challenges posed by plastic pollution. These include biodegradable plastics made from renewable resources, such as plant-based polymers, as well as innovative materials in the form of compostable plastics and edible packaging. Additionally, initiatives promoting the use of reusable containers, eco-friendly packaging, and sustainable materials aim to reduce reliance on conventional plastics and promote a circular economy model. By embracing alternatives to plastics and adopting sustainable consumption practices, individuals and businesses can contribute to mitigating the impacts of plastic pollution and building a more sustainable future for our planet.

Given the omnipresence of plastics in our  modern lives, challenges are inevitable. Therefore, it is imperative to advocate for policies that penalize environmentally destructive industries who rely heavily on these types of materials. Furthermore, prioritizing investments in innovative technologies is crucial to facilitate the transition towards a plastic-free future. As a consumer the best thing you can do is avoid single use plastics whenever possible. Bringing reusable bags to the grocery store, purchasing a metal straw and making use of your favorite reusable water bottle are a great way to start. Are you interested in learning more about the energy sector, energy careers and the impact of our actions on the environment? Visit the Watt Watchers of Texas and Smart Energy Education today to learn more.

As Earth Week approaches, communities around the globe are gearing up to celebrate the planet and to take meaningful action toward its protection and preservation. From April 14th to April 22nd, Earth Day will be commemorated worldwide with events and initiatives that aim to raise awareness and inspire action on environmental issues. This year, Earth Day's primary theme will center around combating the impacts of plastic pollution, emphasizing the urgent need for collective efforts to address pressing environmental challenges that require people to understand many different energy-related topics.

Gaining a holistic understanding of the world's energy and water systems, their relationship with human activities, and their influence on the environment is essential. Because of this, Resourcefulness will be celebrating Earth Week by partnering with Power Over Energy to provide a free screening of the award-winning documentary "Thirst for Power," which will be available on-demand throughout Earth Week, from April 22nd to April 28th, on the Resourcefulness website

"Thirst for Power," based on the book by Dr. Michael E. Webber, and powered by Itron, Inc. was produced by Alpheus Media, in partnership with The University of Texas at Austin and Disco Learning Media. The film offers a compelling exploration of the intricate relationship between energy, water, and human survival. Through a holistic lens, the documentary sheds light on the interdependence of these resources, underscoring the gravity of the challenges we face and presenting a hopeful array of solutions for a sustainable future.

In addition to the screening of "Thirst for Power," Earth Week 2024 will feature a series of events and activities organized by EARTHDAY.ORG to engage individuals, governments, institutions, and businesses in collective action. These virtual and in-person events will span different time zones, offering opportunities for people from all walks of life to participate and contribute to the global effort towards a greener, more equitable future.

As we celebrate Earth Week 2024 and reflect on the importance of protecting our planet, let us heed the call to action against plastic waste. By joining forces, raising awareness, and implementing sustainable solutions, we can work towards a future where the beauty and abundance of our planet are preserved for generations to come.

The modern-day individual has grown accustomed to the seemingly limitless access to food facilitated by the convenience of grocery stores. This is true, at least for those who reside in suburban or urban neighborhoods characterized by higher income levels and greater purchasing power. From restaurants to specialty grocery stores, those who call these areas home have a variety of fresh produce, meats, and other food essentials at their fingertips year-round. However, amidst this abundance, there exists a stark contrast in surrounding communities, where access to fresh, healthy food is severely limited. These areas, known as food deserts, are a troubling reality for millions of people around the globe. So what characterizes a food desert, and how can those who find themselves in one can improve their situation? 

Food deserts are defined as areas where residents have limited access to affordable and nutritious food, particularly fresh fruits and vegetables and other whole foods. In these communities, grocery stores and supermarkets are scarce, and residents often rely on convenience stores or fast-food outlets for their meals. They can be found in both urban and rural areas. However, it's important to note that they disproportionately affect low-income neighborhoods and communities of color. This lack of access to healthy food options can lead to poor dietary choices, nutritional deficiencies, and a higher risk of diet-related health problems such as obesity, diabetes, and heart disease.

You may wonder why some communities are left out if there is so much food available in surrounding areas. The creation of food deserts is often the result of systemic factors such as economic inequality and urban sprawl. Historically, urban food deserts developed as cities grew and families began to move to the suburbs. In this shift, those moving to the city's outskirts brought with them the money and market needed to bring about the modern grocery stores we see today. Unfortunately, this left those without the means to head out of the city with limited options. 

Likewise, food deserts in rural areas have developed due to a variety of interconnected factors. Geographic isolation plays a significant role, as many rural communities are located far from major urban centers and food distribution hubs, making it challenging to transport fresh produce and groceries to these remote locations. Limited economic resources further exacerbate the problem, as rural areas often have lower average incomes and fewer job opportunities, resulting in decreased purchasing power and a reduced ability to attract grocery stores and supermarkets. Additionally, while these communities would typically grow and provide their own meats and produce, a declining interest in agricultural pursuits juxtaposed with dwindling population rates contributes to the issue. As younger residents often migrate to urban areas in search of better employment and educational opportunities, they leave behind shrinking communities with fewer resources. To make matters more complicated, infrastructure challenges, such as poor transportation networks and limited public transportation options, make it difficult for residents to access grocery stores and farmers' markets, further exacerbating food insecurity in rural areas. 

In the fight against food deserts and in the pursuit of food equity, it's vital to deploy a range of strategies across local, regional, and national levels. This entails launching initiatives to draw grocery stores and farmers' markets into underserved communities, enhancing access to public transportation, and offering financial incentives to encourage businesses to invest in these areas. Additionally, community gardens and urban farming projects emerge as pivotal solutions, significantly boosting access to fresh produce and empowering residents to reclaim control over their food supply.

Ultimately, addressing food deserts requires a holistic approach that recognizes the interconnectedness of food, energy, and daily habits. Sustainable food systems are essential not only for ensuring that everyone has access to nutritious food but also for reducing the environmental impact of food production and distribution. By working together to create more equitable food systems, we can ensure that food deserts do not become the norm for people around the globe. Through collective action and a commitment to change, we can build healthier, more resilient communities where everyone has access to the food they need to thrive. If you want to discover more fun energy, food, and water-related activities, visit The Watt Watchers of Texas today!

Time: 2 to 3 hours

Problem Statement:

Students should develop their own definition for the term food desert based on academic literature, contemporary discourse, and their own experiences. Encourage them to evaluate the article exploring food resources linked in the Resources section and other reputable sources. Students should also create a detailed map of food resources in their area, classified by type and annotated with accessibility and time constraints. Then, they should evaluate whether their neighborhood or district is a food desert. How does the students' map compare with the Food Access Research Atlas?

To Consider:

Types of food stores: convenience stores, delicatessens, farmer’s markets, supermarkets, fast-food restaurants, and other restaurantsAccessibility: private car, streets with sidewalks, public transportation (light rail, bus, metro/subway)Time: hours of operation, proximity to schools/work, connectivity with public transit.

Assessment Criteria:

Definition: Excellent student work will align closely with “Areas where low-income people have poor access to vegetables, fruits, and other whole foods.” There may be variation in student definitions based on nuances in urban/rural landscapes, access to different kids of foods, or other personal factors. If the definition is broader or more specific, students should provide ample evidence from citations or personal experience that demonstrate that they understand the concept and that they have applied the concept to a real-life use case.Map: Excellent maps will consider all of the different confirmed and possible food stores in a location, and students will research and present accurate information regarding accessibility and time constraints for these resources. Students should use an excerpt of a digital map (such as Google Maps) or a copy or traced image of a physical map from an atlas in order to present an accurate visualization of the concept.

In the intricate web of global dynamics, few forces wield as much influence on energy and water resources as population growth and economic expansion. The symbiotic relationship between these two factors is particularly significant because they create a complex tapestry of challenges and opportunities, reshaping landscapes and redefining priorities. Because of this, understanding the impacts that population and economic growth can have on everything from a region's natural resources to its energy production systems is paramount when navigating the path towards a future of sustainability and resilience.

Population Growth

At the heart of the energy-resource conundrum lies the inexorable march of population growth. With each passing day, the global population swells, placing unprecedented strains on finite resources. What happens as more individuals enter the fray? The demand for energy and water surges in tandem. This surge is not linear but exponential, fueled by a myriad of factors including urbanization, industrialization, and technological advancements.

Economic Growth

Parallel to the trajectory of population growth is economic expansion. As nations strive for prosperity, economic growth becomes the lodestar guiding their endeavors. However, this pursuit of affluence comes at a steep cost – one that is borne by energy and water resources. Economic prosperity, therefore, correlates directly with increased consumption patterns, wherein affluent populations exhibit a voracious appetite for energy and water-intensive lifestyles.

The Intersection of Climate Change and Policy

Amidst the backdrop of population and economic dynamics looms the specter of global climate change. The ramifications of climate change reverberate across ecosystems, amplifying the pressure on energy and water resources. Rising temperatures, erratic weather patterns, and dwindling freshwater reserves exacerbate the challenges of the energy-water nexus.

Compounding these challenges are policy choices that influence resource allocation and utilization. Policy makers are often faced with the daunting task of balancing competing interests, as they navigate the delicate balance between energy security, economic growth, and environmental sustainability. In some instances, policy decisions inadvertently exacerbate the strain on energy and water resources. For instance, policies advocating for more water-intensive energy production or more energy-intensive water treatment processes can further strain already limited resources.

Meeting the Challenge

Addressing the impacts of population and economic growth on energy resources necessitates a multifaceted approach. At the forefront of this approach lies the imperative to enhance efficiency and promote sustainable practices across sectors. Embracing renewable energy sources, implementing water-saving technologies, and fostering conservation efforts are pivotal in mitigating the strain on energy and water resources.

Additionally, fostering cross-sectoral collaboration and stakeholder engagement is essential in fostering resilience and adaptability. By fostering dialogue and partnership between government, industry, academia, and civil society, nations can chart a course towards a more sustainable and equitable future. The interplay between population growth, economic expansion, and energy resources underscores the need for holistic and proactive approaches to sustainability. By understanding the intricate dynamics at play and embracing innovation and collaboration, nations can navigate the nexus of population, economic growth, and energy resources with resilience and foresight.

Do you think you can model population growth? Check out the following Watt Watchers of Texas activity to find out? 

Activity Overview: 
The key underlying demographic trends that strain energy and water resources are population growth and economic growth. Other key trends are the impacts of global climate change and policy choices, whereby policy makers push for more water-intensive energy and more energy-intensive water.
As the population increases, more people demand more energy and water. However, because of economic growth, which happens in parallel, the demand for energy and water increases faster than the population.1 This phenomenon occurs because economically affluent populations tend to consume more energy and water per person than poorer populations.

Problem Statement:
Describe the nature of exponential growth in human populations. 

Project Deliverables:
Students should use technology to research global historical estimates and population records. They should then create a mathematical model based on the data. Many population curves exist online, but students should not copy and paste them for the purpose of this assignment. 
After creating their models, students should compare them with the widely accepted population curves to see how well they have modeled historical population trends. Historical data will not allow for the creation of predictions of the future, but many of the population curves will contain future predictions based on possible trajectories for population growth.


Exponential population growth can be represented using a simple J curve, but reality is more complex and limited, and could be represented using an S curve.

The United Nations Population Division produces official United Nations population estimates and projections. 

The United States Census Bureau has collated many different resources into a comprehensive historical estimate of world population. 

The attached table is composed of the summary values of Historical Estimates of World Population from the United States Census Bureau. The spreadsheet program automatically generated the scatterplot, which was then adapted to a logarithmic scale in order to better show the trend. Since 1900, there is a slight downturn in the rate of population growth. The exponential trendline superimposed over the scatterplot resembles the sigmoidal curve above. 
Population Growth GraphDownload

As we usher in the new year, there is a palpable sense of optimism in the realm of green energy, sustainability, and technology. Obstacles continue to emerge in many spheres of these sectors. Yet, despite the challenges faced by those who work in renewable energy and clean technology, there are encouraging signs of progress. The notable investments in clean energy alone, which increased by 40% since 2020, indicate a heightened awareness of our impact on the environment and a dedication to transitioning towards a more sustainable energy landscape.

Setbacks and Challenges 

The journey toward sustainability has been bumpy, to say the least, and professionals have unfortunately encountered countless complications along the way. Clean technologies, for example, have consistently faced external pushbacks, pressures, and supply chain issues. These obstacles have proven particularly damaging to the wind sector, which has had to tackle supply bottlenecks and a lack of diversification in the rare earths supply market, among other predicaments. 

Additionally, despite previous policy agreements aimed at mitigating rising greenhouse gas emissions, the global average surface temperature has already surpassed pre-industrial levels by approximately 1.2 °C, resulting in unusual heatwaves and extreme weather events. 

To complicate things further, these greenhouse gas emissions have yet to peak. This means they will continue to rise for the next couple of years instead of commencing their descent to less damaging quantities. Consequently, this contributes to the aggravation of the ongoing climate challenges we are experiencing today. 

As far as our health is concerned, the lack of advancement in clean energy practices has continued to result in arduous physiological consequences. Perhaps most concerning is the fact that the energy sector remains a primary contributor to air pollution, affecting over 90% of the world's population and causing more than 6 million premature deaths annually. Despite efforts to improve access to clean electricity, positive trends have slowed or reversed in some countries, underscoring the need for sustained and intensified global efforts.

Steps Forward 

While setbacks can be discouraging, it is important to keep in mind that they are a part of the process. Each year we continue to fight for clean energy is a year we get closer to achieving our sustainability goals.  Looking ahead, the path to a more sustainable future holds promising developments. For instance, solar power is projected to drive the increase in electricity generation, with the addition of 36 gigawatts (GW) and 43 GW of new solar capacity in 2024 and 2025. This surge is expected to elevate the solar share of total generation to 6% in 2024 and 7% in 2025, up from 4% in 2023. These positive trends, combined with the stabilization of natural gas in electricity generation, underscore a changing energy landscape that prioritizes renewable sources, providing a glimpse into a future that allows for increased sustainability and environmental awareness.

As you can see, there is much to celebrate and at the same time still much left to accomplish. As we embark on a new year filled with promise for the greener energy sector, individuals play a pivotal role in fostering a cleaner environment. Implementing sustainable habits in schools, homes, and businesses can contribute significantly to this collective effort. Simple steps, such as reducing energy consumption by turning off lights and appliances when not in use, embracing energy-efficient technologies, and practicing responsible waste management, can make a tangible impact. Cultivating green habits like recycling, reducing single-use plastics, and opting for eco-friendly products can further reduce the environmental footprint. 

Educating oneself and others about the importance of conservation and adopting green practices can create a ripple effect, fostering a culture of environmental responsibility. By making conscious choices in daily life, anyone can have the power to actively contribute to building a cleaner, healthier, and more sustainable future for generations to come.

At Smart Energy Education, we aim to educate our readers about the importance of clean energy and the amazing opportunities within the energy sector. If you are interested in learning more about energy and energy careers visit our website here. If you would like to access fun, educational activities for students to learn about energy and the world's natural resources, visit Watt Watchers of Texas!

The history of nuclear energy is one that intertwines scientific discovery, technological ingenuity, geopolitical dynamics, and the controversial quest for a powerful energy source. Nuclear materials are part of the earth's crust and have been for millions of years, yet the ability to safely harness nuclear energy for modern power generation is more recent than one might think. Beginning with early 20th-century breakthroughs in atom structure and continuing to present-day debates surrounding its implementation, nuclear energy has been a subject of the world's fascination for over a century.

The roots of nuclear energy can be traced back to the late 19th and early 20th centuries when pioneering physicists began unraveling the mysteries of atomic structure. By revealing that atoms could be split to release immense amounts of energy, the groundbreaking work of figures such as Marie Curie, Ernest Rutherford, and Niels Bohr helped lay the foundation for nuclear power. However, it wasn't until 1939 that nuclear fission, the process of splitting atoms to release energy, was experimentally demonstrated. 

The first controlled nuclear chain reaction occurred in Chicago during the wartime Manhattan Project 1942, a top-secret research and development endeavor that led to the creation of atomic weapons. Three years later, the first nuclear weapon was tested in New Mexico, and in 1948, atomic reactors were the first to generate electricity at a power plant in Idaho. While advancements in this time proved to bring significant technological breakthroughs, concerns surrounding the ethics of using atomic energy were also raised. Consequently, following the war, the focus shifted towards harnessing nuclear energy for peaceful purposes. 

Problem Statement:Describe and illustrate the process of nuclear fission in the context of its role in energy production. Students should use the description above and their knowledge of subatomic particles and forces to construct an illustration of and description of the process of nuclear fission. Chapter 17: Nuclear Energy from Energy 101: Energy Technology & Policy contains a detailed description of the nuclear fission process within the energy industry's broader context. Consider assigning a reading and allowing students to synthesize the information from that chapter into their illustrations and descriptions.The BBC has produced a more straightforward explanation of the particulars of the process of nuclear fission and fusion. This site contains illustrations of the process, which can be used as an example against which to evaluate students' work. 

Assessment Criteria:Students should clearly articulate that nuclear fission is the process of using a high-energy neutron to split the nucleus of an atom into smaller atoms which releases more high-energy subatomic particles, which in turn repeat the process. Excellent work will recognize the introduction of a neutron to the atomic nucleus as the creation of an unstable isotope, which immediately breaks down, releasing energy and subatomic particles. Applying this knowledge to the energy industry, students should identify the preferred stable isotope, uranium-235, and the unstable isotope created uranium-236. Excellent work will contextualize the process of fission as occurring within the nuclear reactor core, where high-energy neutrons released from the initial reaction interact with other uranium-235 atoms in a chain reaction. The reactor core also contains the facilities to absorb the energy released from the reaction into steam generation for a traditional steam turbine.

Nuclear energy promised a way to meet the increasing demands for electricity without relying on fossil fuels, reducing greenhouse gas emissions and mitigating environmental impacts.

Throughout the latter half of the 20th century, atomic energy experienced both periods of rapid expansion and periods of stagnation. In the 1950s and 1960s, the world witnessed the birth of the first commercial nuclear power plants, marking a new era for clean and abundant energy. 

The potential for nuclear energy to revolutionize the global energy landscape was met with enthusiasm, leading to the construction of nuclear power plants across the globe. However, catastrophic incidents such as the Chernobyl disaster in 1986 and the Fukushima disaster 2011 raised concerns about nuclear safety and led to public apprehension regarding its implementation.

However, despite the controversies, nuclear energy remains a crucial component of the energy mix in many countries, providing significant electricity generation and contributing to energy security. Developing advanced reactor designs, including thorium-based and small modular reactors, promises a safer and more sustainable nuclear future.

Currently, the most common fuel for nuclear reactors worldwide is uranium-235 (235U), an isotope of uranium. Other fuels, such as thorium, can also be used, but uranium has become the conventional source of most production for various historical, geopolitical, and technical reasons. The critical physical aspect of controlled fission is the chain reaction that begins when a neutron splits a uranium atom. Splitting the atom emits more neutrons, which then split other atoms. During fission, some mass is lost, converted into thermal energy, as described by E=mc2. That heat can be used to make steam to spin a turbine and generate electricity.

Problem Statement:
During the process of nuclear fission with the uranium-235 isotope, 0.1 percent of the uranium's mass is "lost."¹ We know based on the law of conservation of mass that matter can neither be created nor destroyed, so where did this mass go? Thanks to Einstein's special relativity and his famous formula, physics has an answer for the intrinsic relationship between mass and energy. The 0.1% of uranium is converted to energy according to the principles of E=mc2. In this second activity, reveal to students that physicists weighed all the daughter nuclei and free neutrons from the illustration they created in the first activity and reported that 0.1% of the initial mass was converted during the process of nuclear fission. Have them use Einstein's mass-energy equivalence to calculate how much energy was produced from the fission of 1 gram (g) of uranium-235. (This amount is arbitrary and should not be perceived as the actual amount of fuel used in controlled nuclear reactions.)0.1% of 1 g uranium is 0.001 g or 0.000001 kg or 1 x 10⁻⁶ kgJ = kg m² s⁻²E = energy measured in joules (J)
m = mass measured in kilograms (kg)
c = the speed of light in meters per second (3 x 108 m/s)
E = mc2
E = (1 x 10-6 kg) x (3 x 108 m/s)2
E = (1 x 10-6 kg) x 9 x 1016 m2/s2
E = 1 x 9 x 1010 kg;m2/s-2
E = 9 x 1010 J
Chapter 17: Energy Basics from Energy 101: Energy Technology & Policy provides an introduction to nuclear energy. The BBC Bitesize GCSE review pages provide a succinct explanation with illustrations of the process of fission and fusion. Chemistry Matters from Georgia Public Broadcasting features a lesson on nuclear fission and the different types of radiation. Although formally aligned with the Georgia Standards of Excellence, this material also addresses the TEKS listed on this page.

From climate change to depleting natural resources, the world faces unprecedented environmental challenges. In response to the crises that have surfaced from these events, careers in green energy, conservation, technology, and sustainability have emerged as essential forces in the fight for a better future. While this sector is undoubtedly transformative, it has an outstanding flaw that impedes its ability to thrive at its full capacity. 

In a decades-long struggle to mend a lack of diversity, women, in particular, continue to be underrepresented in pivotal roles when addressing these global challenges. The energy and technology sector has long been notorious for its gender imbalance, but change is on the horizon. With more women entering the field and thriving in various roles, they are making a significant impact on the industry's direction and the development of innovative solutions. Here are just a few pioneering women who are at the forefront of this movement.

Dr. Vandana Shiva

An environmental activist and physicist, Dr. Vandana Shiva is renowned for her unwavering advocacy of sustainable agriculture and preserving traditional farming practices. Through her work, she has succeeded in many impressive accomplishments, including multiple campaigns to raise awareness of the importance of conserving biodiversity and empowering local communities in the face of agricultural challenges.

Christiana Figueres

Christina Figueres, the former executive secretary of the United Nations Framework Convention on Climate Change (UNFCCC), is an essential character in the world of environmental stewardship due to her tireless efforts to drive nations toward a more sustainable future. At the forefront of her achievements stands the pivotal role she played in the Paris Agreement negotiations, which helped shape global climate policy for years to come. 

Dr. Ayana Elizabeth Johnson

A marine biologist, policy expert, and writer, Dr. Ayana Elizabeth Johnson has dedicated her life to ocean conservation and climate solutions. These topics are some of the most important regarding sustainability, yet they are also often neglected in the modern political environment. Her work is significant because it highlights the role of the oceans in mitigating climate change, underscoring the importance of an interdisciplinary approach. 

Mariana Mazzucato

An accomplished economist and author, Mariana Mazzucato's work on mission-oriented innovation and public sector investments has been integral in advancing sustainability goals. Her visionary thinking emphasizes the potential of the public sector to lead the way in building a sustainable community.

Laura Nelson

Laura Nelson, serving as the Executive Director of Green Hydrogen Strategy at Southern California Gas Company, stands at the forefront of the clean energy revolution. Her dedication and expertise have not only fostered advancements in clean hydrogen production but have also played a pivotal role in establishing Southern California Gas Company as a leading force in sustainable energy. Her pioneering work in developing green hydrogen infrastructure has significantly accelerated the transition to cleaner energy sources, reducing greenhouse gas emissions and promoting a greener planet.

The energy and sustainability sector is not just about careers; it's about making a difference in the world. Women are pivotal in pioneering the transition toward a more sustainable and greener future. By pursuing careers in this field, women can be part of a vital movement that addresses pressing environmental and social challenges. The accomplishments of these inspiring women pioneers highlight the significant role women can play in making our world better. 

It's time for more women to join the ranks and lead the way in energy and technology careers. At Smart Energy Education, we aim to encourage women to pursue careers in energy and sustainability and shed light on some remarkable women pioneers who are breaking barriers in this field. If you want to learn more about careers in the energy sector, scholarships, and more, visit Smart Energy Education today!

What is a Green School? 

A green school isn't just a place of learning; it's an opportunity to build the foundations of sustainability and environmental stewardship in a generation of learners willing to make a real difference. These educational institutions go above and beyond traditional academic goals, placing a significant emphasis on reducing the environmental impact of their activities by promoting environmentally conscious habits, health, and wellness. In aiming to inspire the next wave of eco-conscious citizens, a green school nurtures a harmonious relationship between the natural world and the education of its students. From energy-efficient classrooms to an eco-friendly curriculum, green schools strive to foster a deeper connection to nature and sustainable practices.

The Green Ribbon School Initiative

The roots of the Green Ribbon School initiative can be traced back to 2011 when the U.S. The Department of Education (DOE) launched the program with a mission to recognize and celebrate those schools that successfully demonstrated a commitment to sustainability, health, and environmental education. Drawing inspiration from the LEED (Leadership in Energy and Environmental Design) certification for buildings, the Green Ribbon Schools program aimed to create a standard of excellence for schools' environmental and educational efforts. Over the years, this program has evolved, encouraging schools to adopt comprehensive approaches to sustainability, including reducing environmental impact, improving health and wellness, and providing effective environmental education.

Becoming a Green Ribbon School

To become a Green Ribbon School, institutions must follow a comprehensive set of criteria provided by the U.S. Department of Education. These criteria encompass three "Pillars," intending to reduce environmental impact and costs as much as possible, improve the comfortability and health of the students and staff within the school, and provide effective environmental and sustainability education. Schools must work toward achieving these goals and report their progress to be considered for the prestigious recognition.

Becoming a Green Ribbon School is a substantial commitment, but rest assured that any efforts your school invests will pay off. By making a few changes to your institution's daily operations, you can grant your school an incredible opportunity to make a significant difference in its community through its students and personnel, exemplifying the principles of sustainability, health, and environmental stewardship in education. Ultimately, the Green Ribbon School initiative aims to encourage schools to become leaders in the transformation toward a more sustainable and eco-conscious future. It's never too late to start. If you want to take the first steps to become a more sustainable, eco-friendly school, visit Watt Watchers of Texas to get started! 

As the crisp breeze of autumn settles in and the days grow shorter, nothing sounds better than a hot beverage, a warm blanket, and some freshly baked cookies. Yet even with cozy moments by the fire and crisp snow-covered landscapes, it can be challenging to enjoy the season with skyrocketing energy bills around the corner. Fortunately, there are numerous strategies and energy-saving tips you can employ to stay warm and comfortable without breaking the bank. From weatherproofing your home to adjusting your daily habits, these strategies will not only keep you snug but also contribute to a more sustainable and energy-efficient lifestyle. 

Weatherproof your home

Weatherproofing your home is one of the most cost-effective ways to save energy during winter. By sealing gaps and cracks around doors, windows, and other openings, you can prevent heat loss and cold drafts, allowing your heating system to work more efficiently. Doing this not only reduces energy consumption and lowers utility bills but also enhances comfort and minimizes wear and tear on your heating equipment.

Invest in a programmable thermostat

Programmable thermostats are a smart choice for winter energy savings because they allow you to set customized temperature schedules, optimizing heating to match your daily routine. By automatically lowering the temperature when you're away or asleep and raising it when you're at home, these devices prevent unnecessary heating and reduce energy consumption, in turn lowering your heating costs.

Insulate your pipes

When pipes are adequately insulated, they retain heat and prevent water from losing heat as it travels from your water heater to faucets and fixtures. This means you get hot water faster and with less energy expenditure, reducing the need for your water heater to spend more energy as it works to maintain a consistent temperature.

Keep the area around your radiators clear

Keeping your radiators clear is a straightforward yet effective way to save energy and money in the winter. When radiators are obstructed by furniture, drapes, or other items, they are unable to distribute heat efficiently throughout your living spaces. Consequently, your heating system has to work harder and longer to warm your home. By ensuring that warm air can circulate freely, you'll enjoy a more comfortable and cost-effective winter heating experience. So keep the pathways around your radiators clear, and make the most of the heat they produce.

Use energy-efficient lighting

Using energy-efficient lighting, such as LED bulbs, is a small change that can have a significant impact on winter energy savings. These bulbs produce less heat compared to traditional incandescent bulbs, which means less strain on your cooling system in the summer. However, during the winter, this reduced heat production means less wasted energy, as your heating system doesn't have to compensate for excess heat from lighting. 

Keeping your home comfortable through the winter shouldn't have to cost you an arm and a leg. Follow the tips and tricks above and enjoy a warm and cozy home without having to sacrifice your holiday gift budget! Want to learn more ways to save energy at home and at school? Visit Watt Watchers to discover fun energy activities and resources! For those looking to pursue a career in energy, don't forget to check out Smart Energy Education for energy courses, scholarships, and more!

With summer coming to an end, it can be nice to think that cooler weather is just around the corner, but if you happen to live in Texas, you know the heat will likely be on full blast for a while longer. In a state where daily temperatures can exceed 100 degrees Fahrenheit during the day and hesitate to drop below 80 at night, things can get exceptionally sweaty and discomforting very quickly. Once you combine these circumstances with increasing energy costs, keeping your home comfortable without sacrificing your hard-earned savings can seem like an impossible feat. This is especially true when the endless summer heat seems increasingly more hesitant to take a break. Thankfully, we have just the right tips and tricks for you to beat the heat without breaking the bank. Keep reading to learn more!

Our homes are built to keep us sheltered from the weather, and with the help of an AC system, most can do their job exceptionally well. But did you know that making some slight adjustments can enhance your house's ability to keep you comfortable? 


After going through all the previous steps, it can be very frustrating for all your hard work to go out the window (literally). All the little cracks and holes on the edges of your doors and windows don't just let unwanted critters inside; they make it easy for cool air to escape. By properly insulating your home, you create a barrier that prevents this from happening while helping block the entry of hot outdoor air, keeping your home cooler naturally. Ultimately, the upfront cost of insulation pays off by delivering long-term energy savings, making your home more energy-efficient, and providing you with a more comfortable and cost-effective living environment during the summer season. So seal any leaks in your ducts; you can even install energy-efficient windows to ensure your air conditioner won't have to work as hard to maintain a comfortable indoor temperature. 

Cook strategically 

One of the most fun strategies to implement when taking on the summer heat is in the kitchen. Avoid using the stove and oven during peak heat hours of the day. Instead, use these appliances when the windows are open, and the hot air can more easily escape. You can use these seasons to expand your repertoire of recipes, avoiding recipes that require lots of heat. For those who love a good barbeque, you can also make the most of the summer evening by taking out the grill. Meal Prep outside once a week to keep the heat out of your home altogether. 

Upgrade your appliances

Upgrading your appliances can yield substantial summer savings. Modern, energy-efficient appliances use less electricity, such as air conditioners that efficiently cool your home while reducing power consumption. They often come with smart features, allowing remote control and optimizing usage during lower-cost periods. While these appliances may have a higher initial cost, they offer long-term savings by consuming less energy, making them a financially wise choice. Beyond the financial benefits, energy-efficient appliances also reduce your carbon footprint, contributing to a more sustainable lifestyle.

Want more tips to save money by saving energy? Watt Watchers is the number one resource for all things energy education and savings. Visit our website here to discover amazing activities and more tips and tricks to save energy. 

In today's rapidly changing world, the need for sustainability and environmental responsibility has never been more critical. What better place to build a better tomorrow than the institutions responsible for educating our future leaders? Schools have the power to inspire their students to be green ambassadors through many avenues. Thankfully, new research and technology have allowed schools to modify everything from their institution's physical infrastructure and design to their methodology to accomplish groundbreaking sustainability efforts. These new and improved educational institutions are more than just places of modern learning; they are pioneering examples of eco-friendly, energy-efficient, and sustainable infrastructure.

Sustainable schools, also known as green schools or eco-schools, are unique because they take environmental consciousness to the next level by prioritizing ecological responsibility, resource efficiency, and a commitment to teaching students about the planet. So, what does a modern-day green school look like? Keep reading to find out!

Green School Bali

Nestled amidst the lush landscapes of Bali, Indonesia, the Green School Bali stands out as one of the trailblazers for sustainable education. It's a revolutionary institution described as a "wall-less, nature-immersed campus" designed to foster sustainability and innovation through hands-on experiences and real-world solutions. Constructed almost entirely out of bamboo, this academic center considers itself a living laboratory where students are given the freedom to learn about the world through a nature-immersed experience, permaculture gardens, renewable energy sources, and an emphasis on environmental education. With additional locations already in South Africa, New Zealand, and soon Tulum, there's no stopping these green schools from leaving their footprint on the world.

Manassas Park Elementary School

In Manassas Park, Virginia, the Manassas Park Elementary School has proved that even a traditional school building can be transformed into an energy-efficient marvel. The school underwent renovations to expand its campus and increase its energy efficiency in 2009. It even received a LEED (Leadership in Energy and Environmental Design) certification, demonstrating its dedication to sustainable construction and operation. Equipped with temperature and humidity sensors that alert the students and staff when it's the optimal time to open the windows, energy-efficient lighting, solar panels, and rainwater harvesting systems, this school is designed to give all the students and staff the power to be as sustainable as possible in a building designed to make them feel connected to the natural environment.

The Green Free School in Copenhagen, Denmark

This nature-immersed school in Copenhagen, Denmark, prioritizes environmentally conscious education and has placed sustainable living at the forefront of its syllabus. Founded in 2014 by Danish filmmaker Phie Ambo and American translator Karen MacLean, this green institution runs on the principle that to inspire ecological stewardship, students must start by learning hands-on about the planet and how to exist with others in harmony. The school building itself may not be anything eye-catching, yet with a curriculum that teaches students everything from woodwork and craftsmanship to gardening and composting, these project-based learning methods are sure to bring forth a new generation of environmentally conscious, free thinkers eager to make a difference in the world. 

Sustainable schools are more than just educational institutions; they are organizations committed to fostering greener, more sustainable outlooks. These schools are teaching the leaders of tomorrow not only about environmental responsibility but also how to solve real-world problems, design, build, and live in a way that helps instead of harms the planet. As we look to the future, it's clear that sustainable schools can be extremely transformative for young learners and should inspire us all to make changes to improve our education systems to better serve our communities.

Even if a school's infrastructure wasn't originally designed with sustainability in mind, there are still numerous pathways to transform it into a green school. Sustainability is not solely dependent on the physical structure of a building but can be achieved through innovative technology and behavioral changes. Schools can significantly reduce their energy consumption and environmental impact by incorporating energy-efficient appliances such as LED lighting, smart thermostats, and solar panels. Furthermore, shifts in the students, staff, and faculty's habits, such as practicing energy conservation, implementing recycling programs, and promoting sustainable transportation options, can make a substantial difference. 

Regardless of a school's initial design, these efforts empower institutions to embrace sustainability, reduce their carbon footprint, and instill important values of environmental responsibility in their school. It's never too late to start! If you are interested in taking the first step towards making your school a green school, visit Watt Watchers for amazing energy-related lessons, activities, and more! 

Watt Watchers of Texas is a Partner Program of Smart Energy Education.
envelope-ochevron-circle-rightmenu-circlecross-circle linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram